
Available online at www.sciencedirect.com
Tetrahedron Letters 48 (2007) 8956–8959
Total synthesis of (�)-2-epi-lentiginosine by use of chiral
5-hydroxy-1,5-dihydropyrrol-2-one as a building block

Takayuki Muramatsu, Sho Yamashita, Yumiko Nakamura, Masahisa Suzuki,
Nobuyuki Mase, Hidemi Yoda and Kunihiko Takabe*

Department of Molecular Science, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan

Received 19 September 2007; revised 22 October 2007; accepted 25 October 2007
Available online 30 October 2007
Abstract—We have developed a practical synthesis of the chiral lactam as a new chiral building block for alkaloid synthesis. Lipase-
catalyzed kinetic resolution of hydroxylactam 8, followed by isolation–racemization of the chiral acetoxylactam 9 provided the opti-
cally pure hydroxylactam 8 in 96.0% yield with >99% ee after five cycles of kinetic resolution–racemization process. Chemical trans-
formation of (S)-hydroxylactam 8 furnished chiral (�)-2-epi-lentiginosine (1) in 20% yield in 10 steps with no loss of enantiomeric
excess.
� 2007 Elsevier Ltd. All rights reserved.
Polyhydroxylated indolizidines including (�)-2-epi-len-
tiginosine (1) are potent inhibitors of glycosidases and
are of potential use in cancer chemotherapy.1 (�)-2-
epi-Lentiginosine is a metabolite of the fungus Rhizocto-
nia leguminicol and has been postulated to arise biosyn-
thetically from LL-lysine via LL-pipecolic acid.2,3 Although
a large number of synthetic methods of polyhydroxylat-
ed indolizidines have been developed, these asymmetric
syntheses are mainly based on chiral pool approaches.1

More efficient methods for the preparation of such bio-
active compounds are highly desired. Recently, biocata-
lysts have become an important tool for the production
of pharmaceuticals and fine chemicals due to their high
enantio-, regio-, and chemo-selectivity.4 In addition,
they often provide more environmentally friendly pro-
cesses than chemical catalysts. Suitable biocatalysts for
industrial and laboratory uses are commercially avail-
able now; however, they are still very limited. Therefore,
the search for a superior biocatalyst to synthesize new
chiral building blocks is an important field of study.
Recently, we reported that extremely high enantioselec-
tivity (E value = > 1000) was achieved in the lipase-cat-
alyzed kinetic resolution of racemic 5-hydroxy-1,5-
dihydropyrrol-2-one (rac)-5.5 Both enantiomers of 5
were easily attained in 49% yield with >99% ee. Herein,
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we report how the new chiral building block 5 can be
utilized to prepare (�)-2-epi-lentiginosine (1) in high
enantiomeric excess. The retrosynthesis is depicted in
Scheme 1. Ring-closure metathesis of diallyl lactam 2
is a key reaction to form a bicyclic compound contain-
ing the three contiguous chiral centers. The chiral diol
3 is generated from the a,b-unsaturated lactam 4
employing a stereoselective dihydroxylation. The chiral
lactam 4 is obtained by lipase-catalyzed kinetic resolu-
tion of the racemic hydroxylactam 5 prepared from
maleic anhydride (6).

The p-methoxybenzyl (PMB) protecting group was cho-
sen as it can be removed selectively in later transforma-
tions. PMB-protected maleimide 7 was obtained in 90%
yield according to Toru’s procedure,6 following regiose-
lective 1,2-reduction7 using NaBH4/CeCl3 to afford the
Scheme 1. Retrosynthesis of (�)-2-epi-lentiginosine (1) from maleic
anhydride (6).
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Scheme 2. Reagents and conditions: (a) PMBNH2, ZnCl2, HMDS,
toluene, reflux, 2 h; (b) CeCl3Æ7H2O, NaBH4, MeOH, 0 �C, 2 h; (c)
AcOCH@CH2, lipase PS-D (Burkholderia cepacia, Amano Enzyme
Co, Ltd), 1,4-dioxane, rt, 24 h.

Table 1. Cycles of kinetic resolution and racemization

Cycles Kinetic resolution
(rac)-8!(R)-9 + (S)-8

Racemization
(R)-9!(rac)-8

(R)-9 Yield (ee), % (S)-8 Yield (ee), % rac-8 Yield (%)

1st 50 (>99) 48 (>99) 99
2nd 49 (>99) 50 (>99) 99
3rd 49 (>99) 48 (>99) 98
4th 50 (>99) 50 (>99) 95
5th 50 (>99) 50 (>99) 99

Reagents and conditions: (a) AcOCH@CH2, lipase PS-D (Burkholderia

cepacia, Amano Enzyme Co., Ltd), 1,4-dioxane, rt, 24 h; (b) NaOH
(1 equiv), H2O (2 equiv), THF, 25 �C, 24 h.
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racemic hydroxylactam (rac)-8 in 84% yield in two steps.
Lipase PS-D catalyzed kinetic resolution of (rac)-8 fur-
nished acetate 9 with (R) stereochemistry in 49% yield
with >99% ee, along with the recovered alcohol 8 with
(S) stereochemistry in 49% yield with >99% ee (Scheme
2).8

We further investigated a racemization of the chiral
alcohol (S)-8 and the chiral acetate (R)-9 to improve
the total chemical yield (Scheme 3). Chiral acetate (R)-
9 was subjected to racemization in the presence of scan-
dium trifluoromethanesulfonate to give the racemic
alcohol 8 in quantitative yield at 50 �C; similarly, the
chiral alcohol 8 was completely racemized at 25 �C. This
racemization probably proceeded through the same
iminium cation intermediate 10.9 Alternatively, a more
practical racemization was attained under basic condi-
tions using sodium hydroxide. It is probable that the
achiral anion intermediate 11 is formed during the race-
mization process.

Theoretically, chiral (S)-8 and/or (R)-9 should be ob-
tained in 97% yield after five cycles of resolution–race-
mization processes. In fact, lipase-catalyzed kinetic
resolution of hydroxylactam (rac)-8, followed by isola-
tion–racemization of the chiral acetoxylactam (R)-9 pro-
vided the optically pure hydroxylactam (S)-8 in 96.0%
yield with >99% ee after five cycles of kinetic resolu-
tion–racemization process (Table 1). The similar syn-
thetic sequence including racemization of (S)-8 to
(rac)-8 may be used to prepare (R)-9 in high chemical to-
tal yield.

Stereoselective dihydroxylation of lactam (S)-9 was
performed by osmium oxidation. Exposure of (S)-9 to
Scheme 3. Reagents and conditions: (a) from (S)-8: Sc(OTf)3 (1 equiv), H
(2 equiv), THF, 50 �C, 22 h; (b) NaOH (1 equiv), H2O (2 equiv), THF, 25 �C
osmium tetraoxide/NMO catalyst in a mixed aqueous
solvent for 3 h afforded diol 12 in 91% yield with
(2S,3R,4S) configuration as a single diastereomer. Pro-
tection of the dihydroxy group with dimethoxypropane
furnished acetonide 13 in 82% yield accompanied by the
replacement of the acetoxy group to a methoxy group
(Scheme 4).

Acetonide 13 is a good substrate for the stereoselective
nucleophilic addition of trimethylsilyl compounds pro-
moted by boron trifluoride etherate via a well-known
N-acylpyrrolidinium ion intermediate (Scheme 5).9 Ster-
eoselective allylation of 13 with allyltrimethylsilane led
to the lactam 14 in 96% yield as a single diastereomer,
which is a good precursor of gastroprotective AI-77-B
agent as reported by Kotsuki et al.10 Treatment of 13
with the trimethylsilyl enol ether of pinacolone fur-
nished lactam 15 in 70% yield as a single diastereomer,
which has been transformed to the naturally occurring
(+)-calyculin A and (�)-calyculin B as reported by
Smith et al.9 Cyanation of 13 with trimethylsilyl cyanide
also gave lactam 16 as a mixture of diastereomers
((2S,3S,4S): (2R,3S,4S) = 4:1), but they were easily sep-
arated by silica gel chromatography to give the chiral
lactam 16 in 72% yield. The obtained cyanide 16 was
converted to chiral 3,4-dihydroxyglutamic acid 17 as
performed by Oba/Nishiyama et al.11
2O (2 equiv), THF, 25 �C, 7 h; from (R)-9: Sc(OTf)3 (1 equiv), H2O
, 24 h.



Scheme 4. Reagents and conditions: (a) Ac2O, Et3N, CH2Cl2, rt, 10 h;
(b) OsO4, NMO, H2O/acetone/MeCN = 1:1:1, rt, 3 h; (c)
Me2C(OMe)2, p-TsOH, acetone, rt, 24 h.

Scheme 5. Reagents and conditions: (a) Me3SiCH2CH@CH2,
BF3ÆOEt2, CH2Cl2, �78 �C–rt, 20 h; (b) Me3SiOC(t-Bu)@CH2,
BF3ÆOEt2, CH2Cl2, 0 �C–rt, 20 h; (c) Me3SiCN, BF3ÆOEt2, CH2Cl2,
0 �C–rt, 20 h.

Scheme 6. Reagents and conditions: (a) CAN, H2O-MeCN, 0 �C, 3 h;
(b) NaH, BrCH2CH@CH2, DMF, 0 �C–rt, 4 h; (c) Grubbs cat.,
CH2Cl2, rt, 3 h; (d) PtO2, H2 (0.4 MPa), AcOEt, rt, 4 h; (e) BH3ÆTHF,
THF, 55 �C, 12 h, then 1 N HCl, reflux, 30 min; (f) Dowex 1X8-50
(OH� form).
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Lactam 14 was subjected to deprotection of the PMB
group with cerium ammonium nitrate (CAN), and then
allylation of 18 with allyl bromide gave lactam 19 in 62%
yield. Ring-closing olefin metathesis of diallyl lactam 19
in the presence of Grubbs’ first-generation catalyst effec-
tively proceeded to give the bicyclic lactam 20 in 91%
yield. Platinum oxide catalyzed hydrogenation of 20
followed by borane reduction and desalting on Dowex
1 · 8–50 afforded (�)-2-epi-lentiginosine (1). The physi-
cal properties of synthetic (�)-2-epi-lentiginosine (�)-1
were in complete agreement with those reported in the
literature2,3,12 ð½a�24

D �31.3 (c 0.54, CHCl3), lit.2e ½a�25
D

�32.5 (c 0.44, CHCl3). The same synthetic sequence
may be used to prepare ent-1 starting from readily avail-
able (R)-9 (Scheme 6).

In summary, we have developed a practical synthesis of
the chiral lactams (S)-8 and/or (R)-9 as new chiral build-
ing blocks for a multitude of important optically pure
products. Lipase-catalyzed kinetic resolution of lactam
8 demonstrates excellent enantioselectivity. Further-
more, these lactams are easily racemized under acidic
and/or basic conditions. Therefore, the kinetic resolu-
tion–racemization processes provided chiral lactam
(S)-8 and/or (R)-9 in high total chemical yield. Chemical
transformation of (S)-alcohol 8 provided chiral (�)-2-
epi-lentiginosine (�)-1 in 20% yield in 10 steps with no
loss of enantiomeric excess. Further studies focusing
on the use of the chiral lactam (S)-8 and/or (R)-9 as a
new chiral building block in total synthesis of natural
compounds are currently under investigation and will
be reported in due course.
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